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During the crystallization of polymers, both uncrystallizable material (solute') and the heat of fusion are 
released at the growing interface. Both must diffuse away rapidly enough to permit interface propagation 
at a velocity (the 'natural' velocity) determined by the thermodynamic driving force. In general, the final 
microstructure of the solid is determined by the degree to which the flux of solute and heat are compatible 
with the natural velocity. When the diffusion length ~ = D/V (D = diffusivity, V = interface velocity) is 
equivalent to or smaller than a dimension of the growing body, diffusional processes control the 
transformation and the ultimate microstructure. Except for cases of high orientation and relatively large 
effective undercooling, only solute flow is important. Diffusion solutions for solute flow predict a critical 
radius, beyond which fibrillated spherulites with solute incorporated between the fibril arms must form. 
Using a eutectic model, the inter-arm spacing is predicted, with crystallization temperature and diffusivity as 
governing parameters. Under extreme strain, it is possible for a non-diffusive transformation to take place. 
In this case, all solute is captured within the growing crystal and the microstructure is governed by the 
dissipation of the heat of fusion. Very fine, defective fibrillar crystals are predicted. In fibre spinlines, 
fibrillar crystals grow into a stationary thermal gradient. Modelling of the situation is based on the growth 
of a thermal dendrite. At each spinline temperature, there is a critical spinline velocity above which crystal 
growth, in thermal dendrite form, is not possible. This critical velocity dictates the dendrite tip radius. 
Under these conditions, the fibril diameter must be in the range of 10-100 nm. 

(Keywords: microstructure; solute; heat flow) 

VARIETIES OF  MICROSTRUCTURES IN 
SEMICRYSTALLINE POLYMERS 

There is a large variety of microstructures available to 
any given crystallizable polymer. Several microstructural 
types are shown in Figure 1. All these structures have 
been formed by crystallization from the melt. In Figure 
la a p o l y p r o p y l e n e / p o l y ( v i n y l i d e n e  f l uo r id e )  
( P P / P V D F )  blend is shown. Here the PVDF crystallized 
first as round, smooth-surfaced spherulites; the PP 
crystallized later, as coarser, concentric spherulites. Of 
interest here is that spherulites can grow with either a 
smooth or a serrated front. Figure I b shows greater detail 
of a PP  spherulite growing into a PP melt containing 
unincorporable chain components. Here it is clear that 
the front is composed of an array of radial 'arms'. Figure 
lc shows poly(ether ether ketone) (PEEK)  spherulites 
growing from the surface of a carbon fibre. A dense 
branching morphology is seen- -one  in which the 
spherulitic arms branch profusely to fnal ly form a dense 
structure. This contrasts with the more regularly armed 
structures seen in Figures la and b. Figure 2 shows the 
microstructure of PP  crystallized from a highly oriented 
melt. One sees here very fine fibrillar crystals oriented in 
the draw direction. Similar microstructures are seen in 
melt-spun fibres 1'2. 

Within a spherulite there are many levels of 
microstructure; the two largest are sketched in Figure 3. 
The smaller features in Figure 3 are ribbon-like or 
lamelli-form crystals separated from each other by 
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non-crystalline layers. Such interleaved stacks of 
crystalline and non-crystalline matter have a character- 
istic spacing of some 10 nm. Such lamellar crystallites 
appear to be a fundamental growth form, always present 
within spherulites and with thicknesses reflecting the 
polymer type and the temperature and pressure of 
crystallization. At this level, only the interlamellar region 
is highly affected by non-crystallizable components, these 
regions acting as 'sinks' for at least a portion of the 
non-crystallizable material, as indicated by an increase 
in the thickness of the interlamellar region as the 
concentration of non-crystallizable species increases 3'4. 
The bundles of crystallites, or growth arms, on the other 
hand, are only sometimes seen. Their presence and lateral 
dimensions depend on the nature and concentration of 
any non-crystallizable matter which had been present in 
the melt and on the solidification temperature. In general, 
the arm spacing becomes finer with decreasing 
temperature 5. 

It is acknowledged that arm thickness and spacing is 
defined by the redistribution of non-crystallizable 
material during crystallization 5-~1. Associated with this 
is the final location of domains of non-crystallizable 
material 6,12. One of the purposes of this paper is to put 
forward a framework by which spherulitic pattern detail 
can be treated. 

During crystallization, the heat of fusion must be 
deposited at the growth front. Under conditions of 
quiescent crystallization, the thermal diffusivity is high 
enough that dissipation of this heat into the melt poses 
no hindrance to motion of the growth front. However, 
if the velocity of crystal growth is sufficiently high, 
thermal diffusion can also play a major role in pattern 
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move forward, liberating at the interface the heat of fusion 
and any non-crystallizing species; and the heat of fusion 
and the non-crystallizing material ('solute') must be 
conducted away from the growth front. 

The crystal/non-crystal front is driven forward by a 
thermodynamic driving force. This driving force is zero 
at the thermodynamic melting point, Tin, and increases 
as the temperature of the non-crystalline phase is 
depressed further below T m, i.e. as the undercooling 
increases. When the driving force for crystallization is 
low, e.g. at low undercooling, the growth front is driven 
forward at a low velocity. As the undercooling increases, 
so does the driving force and the natural velocity, V,, of 
the growth front. The growth velocity is an algebraic 
function of the undercooling T m - T or AT : 

V. = V.(AT) (1) 

As the growth front moves forward, the latent heat of 
fusion, L, is evolved continuously at that interface. At 
the moving front, an amount of heat, L V, per unit area 
per second is evolved. This heat must be removed, 
normally by diffusive or convective flow. We note that 
as the front moves faster and faster, more and more heat 
is evolved per unit time, requiring increasingly more 
efficient removal mechanisms. 

That dissipative 'solute' flow must be important has 
also been recognized for nearly 30 years 5-9. All 
commercial semicrystalline polymeric materials contain 
chains which are unincorporable, due to chemical, steric 
or molecular mass differences. Consequently, concentra- 
tion effects may be more general in polymers than in low 
molecular weight materials. If the concentration of some 
solute in the original non-crystalline phase is c o and the 
(smaller) concentration allowed in the solid is cs, then 

Figure 1 Micrographs illustrating spherulitic microstructures. (a) 
PP/PVDF blend (50/50), in which the PVDF crystallized first, as 
spherulites with a smooth spherical surface; PP later crystallized 
epitaxially on the PVDF spherulites (SEM micrograph). (b) PP 
spherulite growing into a PP melt (optical micrograph, crossed 
polarizers). (c) Densely branched PEEK spherulites nucleated on 
carbon fibres (optical micrograph, bright field) 

formation 13. Such conditions of extreme driving force 
are expected in the crystallization of highly oriented 
material. This type of transformation is expected in 
high-speed spinning, in post-spinning heat treatments of 
partially oriented yarns and under some laboratory 
conditions of film formation. 

In such cases of rapid, oriented crystallization, 
transmission electron microscopy of fibres 1'2 and 
• films 14-19 has revealed very fine fibrillar crystals, the 
fibril axis coinciding with the draw direction. For such 
cases, solute cannot move rapidly enough to diffuse away 
from the growth surface and the fine structure is 
determined by heat flow. Problems of heat flow under 
such conditions will be discussed. 

DRIVING FORCE AND TRANSPORT 
CONSIDERATIONS 

During the crystallization of all materials, two processes 
must take place : a crystal/non-crystal growth front must 

Figure 2 Transmission electron micrograph of a melt-drawn PP film. 
Draw axis horizontal 

(a) 
I 

(b) 

Figure 3 Levels of microstructure in spherulites : (a) spherulite arms ; 
(b) stacked alternating crystalline and amorphous lamellae 
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Figure 4 Sketch of the role of sharply pointed asperities in creating 
three-dimensional diffusion fields 

an amount of solute (Co - cs)V is rejected per unit area 
per second at the interface and must be removed by 
diffusive or convective action*. Keith and Padden have 
recently provided a treatment of the effects of chain length 
effects on the concentration gradient in the melt near the 
growing interface a. The same authors have produced a 
simplified model for the effect of growth surface geometry 
on spberulite growth 9. This latter analysis points to the 
proper physics but is not sufficiently detailed to provide 
a framework for a quantitative theory of pattern 
formation in polymeric systems. 

These transport problems provide a limit to the 
velocity at which the growth front can move forward. 
Suppose that the transport processes by which the heat 
or 'solute' is removed are diffusive. A classical problem 
in diffusivity is that in which a front moves at a 
velocity Vd, consistent with maintaining thermal and 
chemical equilibrium at the interface, i.e. with maintain- 
ing a temperature Tm at the interface and/or  maintaining 
a thermodynamically specified solute difference Ae across 
the interface. This diffusion-limited velocity Va is that 
which would be taken by the system when the role of 
the driving force is ignored, i.e. when V, is so much 
greater than Vd that growth dynamics are determined 
only by I'd. 

At low driving forces, V, is low. If 11", << V d, then heat 
and 'solute' can diffuse away easily and Iv'. becomes the 
velocity of the interface. At very high driving forces, 
V, > Vd and transport of heat and/or  solute control the 
behaviour. Under these circumstances, the system seeks 
means whereby heat and solute can be removed most 
efficiently. Increasing this efficiency usually means 
changing the removal process from one-dimension (as 
for a planar front or, nearly, for a spherical one) to a 
greater dimensionality. Figure 4 illustrates the nearly 4n 
solid angle available to solute or heat flow in protuberant 
growth. 

When V, > Vd, the interface becomes unstable to 
protuberances and the ultimate growth takes place via 
rod-like or lamellar growth entities. Fascinating and 
interesting growth patterns such as dendrites, spherulites 
and two-phase growth forms occur. The underlying 

* Intrachain defects, including chain ends, are normally unincorporable 
or are incorporable only at low concentrations in polymer crystals. 
The conduction of defects away from the growing interface can be 
important at the dimensional level of the interdefect spacing. This 
would be some 10 nm for cases of interest and consequently the 
crystalline thickness, of the same order of magnitude, could be affected. 
In the present context, however, only larger dimensional levels are 
considered and questions of defect flow will not be treated 

physics for these processes has been studied for many 
years. The generic name for such processes is 'pattern 
formation' during crystallization 2°. 

It is the aim of this study to treat pattern formation 
in polymer crystallization. For the most part, the models 
will be kept as simple as possible, so that the conceptual 
physics and their quantitative application are clear. We 
shall consider the underlying physics, and then the role 
of the material and thermal fields in pattern formation 
in the quiescent crystallization of homopolymers and 
blends and for the case of strain-assisted crystallization, 
especially fibre spinning. 

DRIVING FORCE AND THE NATURAL 
GROWTH VELOCITY 

At any temperature below the equilibrium melting point, 
a melt is unstable with respect to the crystalline phase. 
The free energy decrement upon crystallization of a 
(boundless) mass of material is given approximately by: 

AG¢/, = L ( T  m -- T ) / T  m (2) 

where AGc/, is the free energy difference between the 
crystalline and non-crystalline phases and T is the 
temperature at which the transformation is taking place. 
The quantity T m -  T is termed the 'undercooling'. 

Kinetic rather than purely thermodynamic factors 
govern the rate of this transformation, and indeed 
whether or not the transformation will take place within 
a measurable time at a given temperature or at a given 
cooling rate. The kinetics of the forward motion of the 
crystal/non-crystal interface relate to the rate at which 
new matter is deposited on the growing face of the crystal. 
Figure 5 shows the growth surfaces of lamellar crystals. 
Growth occurs by the accretion of chain strands onto 
the growth surface. Suppose that the growth surface is 
initially smooth, i.e. a layer of chain strands has just been 
deposited and a new one has not yet been started. The 
new layer starts, as in Figure 5a, with the deposition of 
the first strand. This first strand is bound to relatively 
few neighbours in the already completed layer. Thus it 
lowers the internal energy of the system only a little, 
compared to a strand wholly incorporated within the 
crystal. On the other hand, this strand (and every strand) 
adds an amount of surface energy 7evs, where ~e is the 
specific surface energy of the broad surface and vs is the 
cross-sectional area per strand. The result is that there 
is a net increase in internal energy upon depositing the 
first strand. Subsequent strands bind to already placed 
strands in the new layer, as well as to the substrate layer 
and consequently lower the net internal energy. For both 
the first and the subsequent strands, the chain segments 
must be transported from the non-crystal side of the 
interface to the crystal side and there is also an activation 
energy of transport, Qt, to be overcome. 

Thus for both the deposition of the first strand and of 
the ensuing strands there is an activation energy to be 
overcome by thermal fluctuation. The activation energy 
for the initial strand is much larger than that for the 
strands which will complete the layer. One can describe 
this total process in terms of sequential nucleation 
(deposition of the first strand) and layer growth 
(deposition of the following strands). Hoffman et al. 21 
have observed two distinct kinetic regimes in the 
crystallization of polymers from the quiescent melt. At 
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relatively low supercoolings, the rate of nucleation is 
relatively small, compared to the layer growth rate. In 
this case, once a new layer nucleates, layer growth to 
complete the layer occurs very rapidly and then a new 
layer must once again be nucleated. This regime I process 
is illustrated in Figure 5a. At lower temperatures, regime 
II, the absolute rates of nucleation and layer growth 
become competitive and new layers nucleate on growing 
layers. This situation is depicted in Figure 5b. The overall 
growth velocity, V., is analysed according to a kinetic 
analysis due to Lauritzen and Hoffman 22'23, based on 
an earlier model of Turnbull and Fisher 24. This analysis 
results in the following expression, which is valid in both 

Surface f ~ ~ ~ _ _ j  SurfaECnergy ~, 

REGIME 2 

(b) 
Figure 5 Models of crystal growth due to the accretion of chain 
strands onto the lateral surface of a thin polymer crystal: (a) regime 
I, in which a new layer is completed before the next layer begins; (b) 
regime II, in which there is simultaneous growth from several centres 
and layers 

regimes I and 1121: 

V. = A e x p [ - Q t / R ( T -  T1) ] e x p ( - K g / T A T )  (3) 

where A is a constant, T1 is a temperature somewhat 
below the glass transition temperature and Kg is the net 
activation energy for layer growth (a compound of the 
nucleation and layer growth activation processes). 
Clearly, the first exponential represents transport across 
the interface and the second exponential represents 
deposition of strands on the crystal. Here Kg has different 
expressions in regimes I and II: 

Regime I : Kg I = 4BT¢TsTm/kL (4) 

Regime II : Kg n = 2bT,7sTm/kL (5) 

where b is the thickness of a layer and k is Boltzmann's 
constant. 

Two comments on equations (3)-(5) are useful at this 
point. (1) The natural growth velocity is the product of 
a transport term, e x p [ -  Qt/R(T - T 1 )], and a driving 
force term, exp ( -Kg /TAT) .  The transport term 
increases monotonically with temperature, whereas the 
driving force term increases with undercooling (at least 
until rather high levels of AT). The product of these two 
terms produces the familiar bell-shaped dependence of 
growth velocity on temperature. (2) There is no reliable 
way to determine the constant A from elementary 
material constants or fundamental properties. Conse- 
quently, throughout our study, when absolute values of 
V, are required, we shall resort to empirical results. 

The empirical data for homopolymers comes from 
spherulite growth rates measured at small undercoolings. 
Figure 6 gives spherulite growth rate curves for polymers 
to be discussed further in this work. We will take growth 
velocities measured at temperatures between the growth 
rate maximum and the melting point to approximate V,. 

DIFFUSION LIMITATION OF THE VELOCITY 
OF A BROAD INTERFACE 

Solutions to the diffusion equation 
The question is 'At what velocity can an interface move 

forward when it liberates heat or solute which must be 
transported away ?' This is a classical diffusion problem 
and will be summarized here. 

For reasons of simplicity, we will treat first a pure solid 
growing into a pure melt supercooled to temperature T o. 
We will then modify this result for the case of solute 
diffusion. For the moment, we will treat the case in which 
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Figure 6 Measured spherulite growth rate v e r s u s  temperature for polymers discussed in the 
present work : (a) 90 : 10 iPS/aPS blend 2s ; (b) 80:20 high/low molecular weight blend of high 
density polyethylene 35 
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the solid remains infinitesimally below T m and all heat 
is transported into the melt. Consider a planar 
crystal/non-crystal interface moving forward at velocity 
V into a melt at temperature T < Tin. The amount of 
heat liberated per unit time per unit area of interface is 
LV.  This flux of heat must be proportional to the thermal 
gradient ( d T / d x ) o  at the surface, given an origin of 
coordinates in the interface: 

V L  = - D r ( d T  / d x  )o (6) 

As the interface moves forward, the temperature at each 
distance x ahead of the interface is given by Fourier 's law : 

d T / d t  = - Dr (d 2 T / d x  2 ) (7)  

The solution to equation (7) which is consistent with 
equation (6) and with the boundary condition 

T ~ T  o as x - ~ o o  (8) 

is 25 : 

V = 2 ( D r / t )  1/2 (9) 

where 2 is given by 

22 exp(22) erfc(2) = (T  m - To)cp/nX/2L (10) 

where Cp is the specific heat of the non-crystalline phase. 
Here erfc(2) = 1 - erf(2), where erf(2) is the tabulated 
error function 26. 

For  solute rejection, the analysis is exactly as above. 
The amount  of solute rejected per unit area per second 
is given by V[c , ( in t )  - c~], where Cs is the (constant) 
solute concentration in the solid and c , ( int)  is the solute 
concentration in the non-crystalline phase at the 
interface, in equilibrium with cs. The flux equation at the 
interface becomes 

V[cn(int  ) -- Cs] = - D ~ ( d c n / d x  ) (11) 

The far-field boundary condition is 

c , ~ c o  as x - o o o  (12) 

Fick's second law is 

d c , / d t  = - D~ ( d 2 c J d x  2 ) ( 13 ) 

And the solution is 

V = 2 ( D J t )  x/2 (14) 

where 

22 exp ( 22 ) erfc (2) 

= {[c . ( in t )  - Co]/[c . ( in t )  - c~]}/n 1/2 (15) 

A similar treatment applies to a spherical growth front. 
The solutions in this case for heat and solute rejection, 
respectively, are again given by equations (9) and (14) 
but now with 

22 - -  Xl/2), 3 exp(22)erfc(2)  = c p ( T  m - -  T o ) / 2 L  (16) 

22 - -  ~1/223 exp (2'], 2 ) erfc (2) 

= {[c . ( in t )  -- Co] /[c . ( in t )  -- c~]} (17) 

Evaluation of diffusion-limited velocities will be treated 
presently. 

Diffusion length 
The diffusion length is the distance over which a 

concentration or temperature field decays to 1/e of its 
value at some origin. In the present case, we consider 

heat or solute being input at the planar surface of a 
semi-infinite solid. The constant ra te  of input is VaLpm 
or V a ( c o - C ~ ) ,  where Pm is the density of the 
non-crystalline phase. Suppose this input to be constant 
in time and the interface be stationary. The problem is 
then given by: 

LVa/c  r, = - D r ( d T / d x ) x = o  (18) 
lid ( d T / d x )  = - Dr (d 2 T / d x  2 ) 

o r  

(C o -- cs)V d = - D s ( d c n / d x ) x =  o 
(19) 

V d ( d c J d x )  = - D s (d2c , / dx  2 ) 

The solutions to equations (18) and (19) are, 
respectively : 

[ r ( x ) -  T o ] / [ W ( O ) -  To] = e x p ( - V d x / D r ) ( 2 0 )  

and 

[Cn(X ) - Co]/(c o - cs) = exp( - Vdx/Ds) (21) 

In both cases, the left-hand side is the fractional decrease 
in level between the value in the melt at the interface and 
the far-field value. When the left-hand side of equation 
(20) or (21) is I /e ,  the value of the diffusion length 6 is 
defined by : 

6 = D/Vd (22) 

where D is either D r or D~. 
A very long diffusion length indicates that diffusion 

will have little effect on pattern development. A small 
value of 6 indicates that solute or heat diffuses with 
difficulty and may be a significant effect in solidification. 
'Large' or 'small' here refer to some characteristic 
dimension of the growing object. 

For  molten polymers, Dr is usually near 1 x 10 -3 
cm 2 s -1 and D~ is normally in the range 10-14-10 -1° 
cm 2 s-1. A typical spherulite growth velocity is of the 
order 1 0 - 6 c m s  -1. Thus the thermal and solute 
diffusion lengths are approximately: 

6 T =  1 0 3 c m  10 -8 < 6 s <  1 0 - 4 c m  

Thus thermal diffusion has no bearing on spherulitic 
crystallization, whereas solute diffusion should be a 
factor involved in pattern formation during quiescent 
crystallization. 

Thermal diffusion can be important, however, when 
the driving force is very high and growth velocities are 
of the order of 1 cm s-1 or higher. Very high growth 
velocities are experienced in fibre threadlines and 
post-spinning heat treatments. In such cases, the thermal 
diffusion length is of the order of microns or smaller and 
the solute diffusion length is of sub-Angstrom dimen- 
sions. Clearly, no transformation should take place under 
these conditions unless the solute is accepted within the 
crystal. Under such high driving forces it is possible that 
very defect-laden crystals would form, if that were 
necessary to allow a growth front to move forward. In 
such cases of rapid, oriented crystallization, transmission 
electron microscopy of fibres x'2 and films 14--19 has 
revealed very fine fibrillar crystals, the fibril axis 
coinciding with the draw direction and the as-grown 
crystals being very defective 18A9'27. For  such cases, the 
fine structure is determined by heat flow. 

In the following, the question of solute redistribution 
during spherulitic crystallization will be addressed and 
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we shall look at the case of crystallization under extreme 
orientation, where solute incorporation should occur and 
thermal fluxes become controlling for pattern formation. 

STABLE AND UNSTABLE SPHERICAL 
SURFACES 

Statement  o f  the critical radius problem 

In Figure 1 we saw the smooth, stable spherical growth 
surface of PVDF and the unstable, protruberant growth 
of PP and PEEK. A first question to be answered is 
'Under what conditions are stable and unstable spherulite 
growth to be expected?' 

There are two approaches to answer this question. In 
one approach, one asks whether V d is sufficiently large 
to keep pace with 1/",. If the answer is 'yes', then the 
interface is stable; if 'no', then it is unstable. The other 
approach is to use a formal 'interface stability' approach. 
The former approach is used here. 

Using the best available values of diffusivities, values 
of 2 are computed from equation (17). Actually, upper 
and lower bounds are found, as will be shown below. 
From equation (14) and R = ~ V d dt, we write: 

V d = 22ZD~/R (23) 

Using equation (23), we compute Vd as a function of R. 
The sphere radius for which Vd is approximately equal 
to V, is the critical value for transition from a stable (at 
small R) to an unstable (at larger R) interface. 

Evaluation o f  V d 
Two practical problems are encountered in carrying 

out this simple analysis. 
The most difficult part of such an evaluation is to locate 

reliable, absolute values of the diffusivities D s. Recent 
development of measurement methods has enabled 
accurate measurement of such diffusivities. These new 
measurements have generally shown that older data are 
in error by orders of magnitude. Consequently, one is 
limited to a relatively few polymers and temperatures for 
which diffusivities have recently been measured, using 
Rayleigh backscattering, small-angle neutron scattering 
or fluorescence tracer methods. Most of these measure- 
ments relate to self-diffusivities in homopolymers, 
although some blend data are also available. 

While spherulite growth data for many homopolymers 
are available, information on blends or polymer-diluent 
systems is scanty and little diffusivity data is available 
for these systems. 

For the above reasons, the number of systems currently 
available for computation is small. 

A third problem is that a theoretical prediction of 
c,(int) is difficult to obtain. Because of this, evaluation 
of the right-hand side of equation (17) is similarly 
difficult. It is, however, possible to place upper and lower 
bounds on the right-hand side of equation (17). 

The upper bound is found as follows. Since c~ must be 
much smaller than either c o or c,(int) ,  the right-hand 
side of equation (17) is approximately ( 1 / 2 ) [ 1 -  
Co/c , ( in t )] .  The highest conceivable value of c,(int)  is 
1. Thus the maximum value of the right-hand side is 
( l  - C o ) / 2 .  

The lower bound is found from consideration of a 
stationary plane, at whose surface is generated a flux of 
solute equivalent to that of the moving interface 
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considered above. In this case, c , ( i n t ) = 2 C o - C s  
[obtained from equation (21)]. 

One system for which data is available is isotactic/ 
atactic polystyrene (iPS/aPS) blends. Spherulite growth 
velocities are available for such blends 6'28 and 
self-diffusivity measurements of iPS  29-31 are among the 
best available for any polymer. Furthermore, the growth 
rate and diffusivity measurements have overlapping 
ranges of molecular weight and temperature. One must 
assume, however, that the diffusivities of both moieties 
in the blend have approximately the measured aPS 
diffusivity. 

Another system for which reasonable data are available 
is that of high-density polyethylene (HDPE)  blends. 
Excellent recent diffusion data, based on infra-red 
microdensitometry 32'33 and on small-angle neutron 
scattering 34, are available. Included in these data are 
some results on HDPE blends 32. Rego Lopez et al. 35 
have reported spherulite growth rates for blends of 
HDPE having weight-average molecular weights of 
66000 and 2500. 

Let us now look at the case of PS. It should be a good 
approximation that no atactic molecules can be 
incorporated into iPS crystals. Suppose then that all the 
atactic material excluded from the crystal is pushed ahead 
of the spherulite; that is, none is incorporated into the 
spherulite. (The case in which some incorporation can 
occur turns out to be important and will be treated later. ) 
In this case, the requisite concentrations for comparison 
with measured spherulite growth rates in a 90/10 
iPS/aPS blend are: c s = 0 ,  Co=0.1 and 0.25< 
(1/2)[1 - Co/C.(int)] < 0.45. 

Using these values, one computes 2 from equation 
(17). Using this value of 2, one computes V d versus R 
from equation (23). In this latter step a diffusivity of 
2.0 × 10-13cmZs -1, corresponding to a molecular 
weight of 190000 at 174°C 3° has been used. The 
computed V d values can be compared directly with 
spherulite growth rates measured by Boon et al. 28 for a 
similar system (M, = 330000, c o = 0.1, T = 175°C), 
V, = 0.22 pm s- 1 ). 

One can similarly compute 4, and V d versus R for 
polyethylene blends. At temperatures above 120°C, the 
low molecular weight species (Mw = 2500) is entirely 
excluded from the growing crystals 3s. Considering an 
80:20 ratio of high (66000) to low molecular weight 
material, one can again approximate the concentration 
conditions: c s = 0 ,  Co=0.2  and 0 . 2 5 < ( 1 / 2 ) [ 1 -  
Co/C.(int)] < 0.40. 

For crystallization 34 at 125°C, D~= 1.2 × 10 - l °  
cm 2 s- 1. This is the self-diffusivity of the higher molecular 
weight species. Since Klein has shown very little 
dependence of diffusivity on matrix molecular weight 33, 
even when the matrix is of much lower molecular weight, 
this value should be a good approximation for the blend. 
In the comparisons given below, spherulite growth 
velocities are taken from Rego Lopez et al. 35. 

In Figure 7, computed values of the minimum and 
maximum possible growth velocities are plotted against 
the spherulite radius for a 90/10 iPS/aPS blend. Shown 
also is the measured growth rate for this system 28. What 
are chiefly to be noted are the following: the 
diffusion-limited growth velocity V d decreases as the 
spherulite grows, V d oc l / R ,  contrary to most measure- 
ments, which indicate a constant velocity; at submicron 
spherulite radii Vd becomes much smaller than the actual 
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velocity. The 11,, associated with the thermodynamic 
driving force, is very large and has forced the interface 
to move at a velocity beyond that at which a simple 
spherical interface is stable. Such a surface becomes 
unstable to protuberances, which grow at a much faster 
velocity. 

Figure 8 shows the computed minimum and maximum 
diffusion-limited growth rates of spherulites in a 80/20 
blend of high and low molecular weight linear 
polyethylene. Also shown are the measured spherulitic 
growth velocities. In this case, spherulites grow to a much 
larger size before fibrillation sets in. This growth to a 
larger size is due to the smaller diffusivity of polyethylene 
as opposed to PS. Here the non-crystallizable molecules 
diffuse away more rapidly and a higher velocity must be 
reached before the build-up of solute at the interface is 
high enough to require the growth of sharp asperities. 

The critical radius for spherical stability depends on 
the growth temperature and on the molecular weight of 
both components. In Figure 9 are shown velocity-radius 
plots for an 80/20 polyethylene blend, for three different 
temperatures. Over the temperature range considered 
( 123-128°C ) I1, changes by several orders of magnitude, 

whereas V d is little affected. What is seen is that the 
critical radius increases with growth temperature. In 
Figure 10 are shown the spherulite microstructures one 
would expect for the three solidification temperatures in 
Figure 9. At the highest temperature, a spherulite of 6 #m 
diameter would have occluded all solvent, whereas at the 
lowest temperature the spherulite diameter at which 
incorporation of solvent must occur is so small that it 
would not be observable. In this way, the transformation 
temperature is a critical variable in pattern formation in 
blends. 

The molecular weights of the components are likewise 
important variables. Equation (23) shows that the 
velocity at any radius value scales as the diffusivity for 
diffusion of solute from that surface. Thus the computed 
curves for diffusion-limited growth in Figures 7 and 8 
will be shifted up or down, depending on the value of 
D,. Figure 11 illustrates this effect for high/low 
linear polyethylene blends with three different diffusivi- 
ties, corresponding to three different molecular weights. 
As the molecular weight is increased (and the diffusivity 
correspondingly decreased), the V a values cross the I/". 
line at decreasing values of spherulite radius. In fact, the 
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Figure 10 Scale model of the relative sizes of the smooth-surfaced 
portions of spherulites which have grown to a 6 #m diameter. The 
critical size is taken from Figure 9 

V, line will also shift somewhat with molecular weight 
but this will be a relatively small effect compared with 
the shift of the diffusion-limited growth curves. 

If the equilibrium melting point of the blend is 
significantly affected by the solute, then the driving force 
and I/", at a given temperature will likewise depend upon 
concentration. Such effects also need to be accounted for. 

Comments on interface stability 
The stability of a growing planar or spherical interface 

has been a subject of theoretical treatment and of 
simulation for nearly 30 years 36-44. In such work, the 
interface is subjected to a small modulation of prescribed 
form and the system interrogated as to whether or not 
the modulation will develop more rapidly than the 
smooth interface. Any modulation will provide more 
efficient solute or heat diffusion. Consequently, any 
modulation will grow, if not resisted by the creation of 
surface energy. If one considers the modulations to be 
linear or spherical surface waves, the surface energy 
restricts growing modulations to be above a certain 
wavelength. The fastest growing wavelength can also be 
identified, as can the maximum size to which a sphere 
can grow before becoming unstable. 

Calvert lo has applied these considerations to 
spherulite front stability in polymers. He concludes that 
for any reasonable value of diffusivity the spherical front 
is unstable relative to a fibrillar front. 

The applicability of such stability analysis to 
spherulitic growth is somewhat dubious. In a footnote 

to a recent paper, Keith and Padden 45 point out that 
the interface between crystalline and non-crystalline 
regions has ab initio existence within a spherulite and 
that, consequently, new surface is not formed at an 
unstable growth front. This condition is shown 
schematically in Figure ! 2. Here, any surfaces which form 
during surface modulation would form similarly during 
the motion of a spherical front. The total surface area is 
given by the spherulite volume and the intraspherulitic 
lamellar spacing. If there is actually no surface energy 
contribution there should be no lower limit to the fineness 
of the surface modulation. The conclusion to be reached 
from this argument is that the spherical growth front is 
inherently unstable and that the spacing of outgrowing 
asperities must be governed by solute and /o r  thermal 
fluxes directly. Our attention is therefore directed at how 
such fluxes may determine the growth patterns formed. 

OVERVIEW OF S P H ERU LITE  PATTERN 
F O R M A T I O N  

Consider now that a spherulite has nucleated and begun 
to grow. As it begins, it is nearly a 'point source' of heat 
or solute. As it grows, its radius of curvature becomes 
larger, and the spherulite behaves increasingly like a 
growing plane. If the driving force is sufficiently large, at 
some radius level solute cannot diffuse away fast enough 
to maintain the natural growth rate of the spherulite. 

At this point, it may be envisioned that any of three 
things may occur: 

1. The growth may slow down. In this event, there is an 
unfulfilled driving force, waiting to propel the growth 
front at a faster velocity, if an opportunity is presented. 
2. The growth front may decompose into an array of 
narrow, rod-like or lamellar protuberances, growing 
monotonically outward and leaving more and more space 
between themselves. A variant is that these narrow 
entities, still growing independently of each other, 
generate equally narrow branches, which act to fill the 
space between the principal trunks. In such cases, the 
solute molecules diffuse away very rapidly, but a 
relatively sparse spherulite is formed, unless some 
additional space-filling mechanism comes into play. 
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Figure 12 Schematic figures showing a smooth-surfaced spherulite 
and one with pronounced growth arms. What is to be noted is that in 
the spherulite with arms there is no new crystal/amorphous surface 
formed, relative to a similar volume of smooth spherulite, since each 
crystallite is surrounded by amorphous matter in both cases 

3. The growth front remains macroscopically coherent, 
but is microscopically broken up into transformed and 
untransformed regions (Figure 13). In this case, the 
untransformed regions can act as sinks for the solute 
excluded from the transformed regions. In this way, 
solute need not be transported into the far-field, but 
rather need only be transported over a distance of some 
A/2, half the periodicity of the untransformed regions. 

Consider now what happens as a tiny spherulite grows. 
As it expands, more and more solute is excluded and the 
solute concentration Ca (int) near the interface builds up. 
At the  same time, the diffusion geometry becomes 
increasingly linear, because of the increase in radius 
(decrease in curvature). At some radius level, the solute 
flux beyond a spherical interface can no longer keep up 
with the driving force. So long as some path toward faster 
solute transfer is available, the interface will not slow 
down over its entire surface, but rather the spherical 

interface becomes unstable to perturbations. Since 
surface energy is probably not a hindrance, there is no 
lower limit to the wavelength of viable surface 
modulations. Because the growth of surface modulations 
increases as the modulation becomes finer and finer, it 
is expected that nature will choose the finest asperities 
consistent with the interference of solute fluxes from 
adjacent asperities. That is, what limits the fineness of 
the resulting microstructure is the interference of the 
solute fields of adjacent asperities. Thus, of the three 
possibilities above, the third is normally preferred. This 
situation resembles very closely that encountered in 
eutectic solidification of low molecular weight materials. 

It is useful to point out, however, that whether solution 
(2) or (3) is more likely depends on whether or not the 
spherulite can break down into closely spaced asperities. 
Such a fine structure must depend on the concentration 
of non-crystallizable material. If the overall concentration 
of non-crystallizable material is c o , if the concentration 
in the crystallites is zero and if the concentration of 
non-crystallizable material in the domains between 
asperities can be 1, then a mass balance shows the ratio 
of asperity width to intervening width to be (1  - c o ) / c  o. 

Consequently, for blends which are dilute in the 
crystallizable component, the growing asperities must be 
widely separated. In this case, one would expect growth 
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according to case (2): independent dendrites. Indeed, 
this situation is found in such dilute blends, as seen in 
Keith and Padden's dilute iPS/aPS materials 6. 

'EUTECTIC' CRYSTALLIZATION OF 
SPHERULITES 

The separation of 'solute' at the growth front may be 
very similar to what occurs in eutectic alloys of small 
molecule systems. A material with a eutectic transforma- 
tion exhibits a phase diagram of the type shown in Figure 
14a. If an alloy of composition c o is cooled from the melt 
through the eutectic temperature T~u, two new phases 
must form simultaneously. In general, such transforma- 
tions occur by the coupled growth of either alternating 
plates of the two phases or of rod-like crystals of one 
phase within the other. The growth of alternating 
lamellae is sketched in Fioure 14b. The reason for the 
formation of such a fine, coupled growth is that only by 
such means can diffusion keep pace with 1/'.. Since the 
phase is immediately adjacent to the fl phase at the 
growth front, A and B components need be transported 
over a distance of only some A/2, where A is the 
periodicity of the ~-fl stacking. 

A proper quantitative understanding of such a coupled 
transformation requires treatment of the coupled growth 
of dendrites with overlapping compositional fields. This 
topic has been treated extensively elsewhere 46-5°. An 
exact analytical solution is difficult and there is as yet 
no agreement on an optimization principle. 

A first-order, quantitative solution can be taken from 
an older, simpler model 51. In this model, the empirical 
result that growth is steady state is used. In this situation 
one can use Fick's first law to model the diffusive process 
beyond the growing edges. The flux of solute to be 
transported away is J = Veu(Co- cB), where Co is the 

T ~ ¢ ~ i  % ~k~ J~ 

0 % B 100 

Figure 14 The situation for eutectic solidification in small molecular 
systems: (a) phase diagram; (b) growing colony of alternating ~ and 
fl lamellar crystals 

Polymer microstructure." J. M. Schultz 

far-field concentration of B in the melt and c B is the 
concentration of B in solid ct phase. This flux is 
proportional to the concentration gradient, which is now 
approximately (cB=- cBp)/A, where cB= and cBt~ are the 
concentrations of B in the melt just at the a/melt and 
fl/melt interfaces, respectively. The form of the solution 
is then : 

Veu(Co - cB) = D(CB, -- eBp)/A (24) 

Suppose now that crystallization of a polymer blend 
occurs through the creation of two new phases, platelets 
of solute-free crystalline lamellae, separated from each 
other by a non-crystalline ('amorphous') phase of 
composition ca, into which all excluded solvent has been 
incorporated. This system is sketched in Figure 13, along 
with illustrative diffusion paths for the excluded material. 
The composition of the non-crystalline phase in contact 
with the crystalline phase is c.c, that in contact with the 
amorphous, intervening layer C,a. Here, lieu is equated 
with V.. Following the simplified treatment of equation 
(24): 

g n [ C  0 - -  Cs] = --Os[-Cnc - -  C n a ] / A  ( 2 5 )  

If we now take Co >> c= and c.c >> c.,, then : 

V. ~- D=(c.~/Co)/A (26) 

From equation (21), we see that Cno/Co has a lower limit 
of 2. Thus : 

(Vn)min = 2Ds/A (27) 

The absolute upper limit of Cn~/Co is 1~Co. Thus: 

2D=/ V, < A < D,/ co V . (28) 

Keith and Padden TM considering cellulation at the 
growth front, arrive at the same functionality. 

While D= and V, are strong functions of temperature, 
they are only weakly dependent on composition, 
providing that the concentration of solute is not great 
(<20%) or the diffusivities of the crystallizing 
component is greater than or equal to that of the solute. 
This can be seen, for instance, in the growth rate data 
of Keith and Padden 7. 

Figures 15 and 16 show maximum and minimum values 
of A for iPS/aPS and for high/low molecular weight 
polyethylene blends. These values were computed using 
measured growth rates T M  and diffusivities determined 
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Figure 16 Computed upper and lower bound spherulite inter-arm spacings for an 80:20 high/low molecular weight PE blend crystallizing at 125°C 

from the data of Antonietti et al .  29 for PS of 60000 
molecular weight and of Bartels et al. 34 for polyethylene 
of 66 000 molecular weight. 

The kinetics of densely branched spherulitic structures 
(Figure lc)  require more sophisticated treatment. Such 
morphologies develop because of the geometrical 
instability of the dendritic tip. Goldenfeld 11 has put 
forward an outline of the treatment of this problem, but 
this must still be developed quantitatively. 

CRYSTALLIZATION IN HIGHLY STRAINED 
SYSTEMS 

Background 
High-speed fibre spinning and the heat-setting process 

in conventional spun fibres are archetypal cases of 
crystallization under very high molecular orientation. In 
these cases, for example for poly (ethylene terephthalate) 
(PET), the crystal/non-crystal growth front moves at 
velocities of at least 75cms -1 and up to some 
15 000 cm s- 1 and crystallization is observed to occur at 
temperatures as low as 120°C. 

There are three very interesting implications here: 

1. With 'solute' diffusivities in the range of 10-14_ 10- lo 
cm 2 s-1, the solute diffusion length at these growth rates 
becomes of atomic dimensions. This means that it is 
impossible for the non-crystallizable molecules to diffuse 
away fast enough to keep up with the growth front. 
Consequently, any normally non-crystallizable molecules 
must be incorporated into the growing crystals. The 
crystals produced in this way must be highly defective 
and only metastable. It would require a high driving force 
to permit such massive defect incorporation. 
2. The natural growth rate is orders of magnitude too 
low to produce the necessary growth-front propagation 
rates. However, if a diffusionless transformation is 
possible, crystallization can still occur. For such a 
diffusionless process to occur, at least the following must 
be obtained : 

(i) The chain repeat units must be already near their 
ultimate crystalline sites, so that no long-range transport 
is necessary. This implies that the system be highly 
oriented; diffusionless processes should occur only in 
highly elongated systems. 
(ii) Normally unincorporable components must be 

included in the transformed product, unless their mobility 
is enormously greater than that of the normally 
crystallizing polymer. Because of the incorporation of 
such defects, the product will be metastable, and should 
be capable of further transformation later. 
(iii) The effective undercooling must be very great, at 
least locally, in order to produce a net free energy decrease 
upon crystallization to the metastable product. 
(iv) A molecular mechanism ofdiffusionless transforma- 
tion must be available. 

A few comments on the occurrence of such diffusionless 
crystallization and on the requirements (i)-(iv) follow. 

Such processes appear to occur in melt-spun fibres. 
For instance, whereas quiescent crystallization of PET 
at 120°C occurs with a half-time of 300-1000s 52, 
crystallization of oriented PET fibres 27 at the same 
temperature has a half-time of the order of 0.1 s. Very 
small half-times of crystallization have likewise been 
reported for nylon 66 fibres 53. Van Antwerpen and van 
Krevelen report spherulite growth velocities in un- 
oriented PET at 140°C of the order of microns per 
second 52, whereas Hristov and Schultz 54 report crystal- 
lization velocities of the order of 100 cm s -1 for PET 
fibres crystallized under axial stress at this temperature. 
Under such conditions, the crystallization product is very 
fine ( < 10 nm) fibrils whose axes contain the chain and 
fibre axes 1'27. 

Similar results are reported for very thin polymer films 
drawn directly from the melt under conditions of high 
lateral constraint and rapid cooling. For instance, fine 
(,~ 10 nm) fibrillar crystals are invariably formed 14-19. 
Again, these crystals formed during the very rapid (tens 
of milliseconds) cooling of the films to near room 
temperature. 

It is suggested that in these cases, the chains need only 
'jostle' slightly to come into near-crystalline registry. A 
more precisely defined mechanism has not been 
proposed. Since the motion of the crystallizing molecules 
is so restricted, kinks and jogs in the chain must be 
incorporated. In fact, the crystals initially formed exhibit 
poor crystalline order, indicating the incorporation of 
defects and/or of defective species. With heat treatment, 
the defects rapidly migrate, causing formation of a 
periodic crystal-amorphous sequencing. 

The incorporation of normally non-crystallizable 
molecules into such rapidly growing crystals is normally 
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necessary, because the diffusion length has shrunk to the 
dimensions of a few molecular diameters. Let us take 
such a diffusion length as 1.0nm. The velocity V* 
associated with this diffusion length and a diffusivity of 
10-12cm2s - t  is of the order of 10-Scms  -~, many 
orders of magnitude below the measured growth rates. 

The large driving force may be an entirely thermal one 
(large undercooling) or it may be assisted by molecular 
orientation. In the Appendix it is shown that for usual 
macroscopic draw ratios (~<4), the additional under- 
cooling due to orientation is normally tens of degrees, 
but this may be locally larger, for instance, near 
entanglements or at the tip of a growing fibril. 
3. The transformation kinetics must become governed 
by the rate at which the heat of fusion can be removed. 
Suppose that crystallization is taking place at a velocity 
of 75cms  -1, as directly observed in post-spinning 
treatment of PET fibres 54. With a thermal diffusivity of 
6 x 10 -4 cm 2 s -1, the thermal diffusion length will be 
< 10- 5 cm. For PET fibres spun at 10 000 cm s- ~ (in the 
ultra-high-speed spinning range), the thermal diffusion 
length will be < 1 nm, assuming, as is reasonable, that 
there is only one crystallization front. Since crystal 
growth-front dimensions are generally of the order of 
magnitude of the diffusion length, very fine crystals are 
expected. 

Finally, for molecular orientation to be effective, 
crystallization must occur before relaxation to a less 
oriented state can occur. For PET, such relaxation is 
found to occur in a time of the order of lOOms. 
Consequently, processes in which such diffusionless 
transformations occur must be such that the molecules 
are in a sufficiently extended state during the 
crystallization process. Normally this requires a positive 
stress or strain on the system during the transformation. 

Heat  f l ow  effects during crystallization in highly oriented 
sys tems 

From the thermal diffusion length values mentioned 
above, it becomes clear that a simple spherical or a planar 
front is not possible ; rather, the growth front must break 
down into fine, fibrous crystals, in order to dissipate the 
heat of fusion most efficiently. Such behaviour is well 
known in small molecule systems. The resulting 
elongated crystals are known as thermal dendrites. 

Theories of dendrite growth attempt to predict the 
relationship between growth velocity V and dendrite tip 
radius p and to generate absolute values for these 
quantities. Most analyses 2°'55's6 begin with the uncon- 
strained growth of a rod of constant tip geometry growing 
into an infinite melt held at To < Tm. This is a steady-state 
(constant velocity) problem and has been solved 
analytically for paraboloids of circular 57 and elliptical 58 
cross-section. For a crystal with an isothermal tip of 
circular cross-section. Ivantsov 57 derived the following 
relationship between V and p: 

- -  ( V p / 2 D r )  exp ( V p / 2 D  r ) E  i ( - -  V p / 2 D r )  

= ( % / L ) [ T ( i n t ) -  To] (29) 

where T (int) is the temperature of the non-crystalline 
phase at the growth surface and Ei (y) is the exponential 
integral function : 

f: E i ( y )  = (e-a /a )  da (30) 

P o l y m e r  m i c r o s t r u c t u r e :  d. M .  S c h u l t z  

In order to solve for the product Vp,  a value of T(int)  
must be obtained. For a pure substance: 

T(int)  = Tm[1 -- ( 2 7 s / L ) / p ]  - c ~ T  (31) 

where the term containing p and Ys accounts for 
capillarity at the tip and fiT is the undercooling necessary 
to drive the interface forward at velocity V. Inserting (31) 
into (29) : 

-- yeYEi(--y) 

= ( c p T m / L ) / [ 1  - To/Tm -- ( 2 y s / L ) / p  - 6 T / T m ]  
(32) 

where y = Vp/2Dr .  Bolling and Tiller 59 point out that 
a dendrite growing at constant shape cannot be 
isothermal. The analysis has been modified 59'6° to 
account for non-isothermal effects. 

For long-chain polymers, another undercooling term, 
6T,, must be incorporated. This term accounts for the 
effect of chain extension on the undercooling. As shown 
in the Appendix: 

~T~ ~ 3RT(x 2 - 1) /n  (33) 

where x is the relative chain extension (the local draw 
ratio) and n is the number of flexible segments in the 
chain. Incorporating (33) into (32), one has : 

- y C E  i ( - y ) 

= ( cpTm/L)[1  - ( T  O + ~ T +  c~T~)/T m - (2y~/L)] 
(34) 

Algebraically, the effect of chain extension is as a simple 
decrement to the far-field temperature To. 

While (34) can be solved to obtain a relationship 
between V and p, another principle must be invoked to 
establish absolute values. Such principles are generally 
attempted answers to the question 'How does nature 
decide what velocity (or radius) to choose?' Some 
attempted solutions include maximum entropy produc- 
tion 59, maximum growth velocity 59-61 and, most 
recently, marginal stability 2°~62'63. 

In the case of fibre spinning, the fibre is effectively 
moved through a temperature gradient. This situation is 
depicted in Figure 17. In this case, a growth front is stable 
in laboratory space, at some temperature at which the 
diffusion-controlled growth velocity matches the spinline 
velocity. Here V has an exothermaUy imposed value and 
(34) can be solved to find the relationship between V 
and the crystallization temperature. 

Two modifications to equation (34) are to be made in 
this case: the 6T term can be ignored, since there is 
no thermal impediment to the conjectured diffusionless 
growth, i.e. V, is without bound; the heat of fusion L is 

V 

I 

Fiber I[ 
T e m p e r a t u r e  

, R T  

Position 

Figure 17 Schematic of a melt-spinning fibre threadline and of the 
temperature along the fibre 
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effectively lowered through the incorporation of defects 
in the product crystal. This effect has been incorporated 
in the treatment of Tiller and Schultz 13. 

In practice, one uses (34) to obtain the V - p  
relationship for possible crystallization temperatures T. 
These results are then used to determine absolute values 
of T and p. To a first approximation, (34) is used without 
the V/fl term and without including a defect term. Such 
a set of solutions is shown in Fioure 18, using parameters 
appropriate to PET fibres solidifying isothermally. The 
parameters used are given in Table I. 

It is useful to look in some detail at Fioure 18. At each 
temperature, there are two values of crystallite tip radius 
associated with each velocity. This bifurcation reflects 
two possible ways in which L can be dissipated at a rate 
consistent with the imposed transformation front 
velocity. One way is to form filamentary crystals narrow 
enough to dissipate the heat three-dimensionally. In this 
case, the heat is dissipated so efficiently that the 
temperature gradient beyond the tip is relatively small. 
The other way is to operate at a sufficiently large tip 
radius that the thermal gradient remains large and the 
consequent heat flux also relatively large. At any 
temperature, the tip radii associated with these two 
mechanisms approach each other as the velocity 
increases. Finally, there is a critical velocity at which the 
two branches merge and above which heat cannot be 
dissipated rapidly enough to maintain the imposed 
crystallization rate. 

The critical velocity increases with decreasing tempera- 
ture. Below 185°C the critical velocity increases very 
steeply with temperature. 

The tip radius associated with the critical velocity 
increases with the critical velocity. 

Consider now what happens in a spinline. As a volume 
element moves away from the spinneret, it experiences a 
continuously decreasing temperature and a continuously 
increasing elongational stress. George has shown that 
the temperature gradient along the fibre is nearly 
independent of take-up speed (at constant spinneret 
throughput) 64. At low spinline velocities, the fibre 
diameter decrease is gradual and is predictable on a 
macroscopic model of the material and heat flows. 
However, above a critical take-up speed, the region of 
diameter decrease becomes localized in a narrow 
neck  64-66. According to the present model, in this narrow 

zone the local molecular orientation is sufficiently high 
to trigger diffusionless transformation. The actual 
crystallization in this zone occurs at a velocity given by 
the local spinline velocity and at a temperature and 
crystalline fibril diameter dictated by local heat flow. 

As the volume element moves downstream from the 
spinneret, it encounters lower and lower temperatures. 
Associated with these temperatures is a critical velocity, 
above which crystallization cannot take place (Figure 
18), since the heat of fusion cannot be removed rapidly 
enough. When the local temperature is such that the 
critical velocity matches the local spinline velocity, then 
crystallization can take place. In this way, the 
crystallization temperature and the crystallite diameter 
are fixed by the critical velocity. 

Fioure 19 shows the crystallization temperature and 
crystal tip radius, determined from Fioure 18. Over the 
region of spinline crystallization ( > 3500 m min- x ) the 
crystallization temperature is effectively constant, at 
183°C, while the filament radius increases with spinline 
velocity. It is to be emphasized at this point that the 
computations leading to Fioures 18 and 19 are based on 
values of thermal diffusivity and surface energy which 
may or may not match the actual values of the highly 
oriented systems under analysis. Nevertheless, the 
predicted crystallite size and the crystallization tempera- 
ture are of the correct magnitudes. Furthermore, in the 
computations of Fioure 18, the effective undercooling was 
not allowed to vary with spinline velocity. The effect of 
this simplification is treated below. More detailed 
correlation with experiment is now examined. 

Fioure 20 shows experimental crystallite diameters, 
obtained by several authors 67-69 from X-ray diffraction 
data, using the Scherrer formula. The broken line curves 
are the values predicted by equation (34), using different 
values of surface energy and thermal diffusivity (similar 
to, but different from, those of Table I). Both 
experimental and predicted values increase with spinline 
velocity, but the theoretical curves show a low velocity 
asymptote not found in the experimental results. 

Fioure 21 shows experimental crystallization tempera- 
tures (actually heat-flow computations based on 
measured spinline diameter measurements) versus 
spinline velocity. While the data of Heuvel and 
Huisman 67 lie above the prediction, those of Shimizu et 
al. 7° and of George 64 lie below. This is not too surprising, 
since the temperature at which crystallization takes place 
is known to be strongly affected by molecular weight and 
chain branching 68'~1. Further, the entropy of fusion, 
L/Tm, is an important parameter in the computed 
temperature of crystallization, but may be itself a function 
of orientation and defect incorporation. 

While the absolute value comparison between 
predicted and 'measured' temperature is. acceptable, it 

Table 1 Material parameters used in PET fibre velocity computation. 
(Thermodynamic parameters taken from D. W. van Krevelen, 
'Properties of Polymers', Elsevier, Amsterdam, 1976) 

cp (cal m o l -  a ° C -  l ) 94.1 
L (cal mol - z ) 5820 
p~, ( g c m  -3 )  1.33 
T m (°C)  518 
n 200 
x 6.4 
Dr (cm2s  -1 )  0.58 x 10 -3 
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is clear that the trends of solidification temperature versus 
threadline velocity are different between experiment and 
prediction. This is, however, expected. In the computa- 
tions, the actual melt temperature T O was not used ; what 
was used was the difference To-fiT. In order to obtain 
the actual melt temperature, it is necessary to add the 
'orientation undercooling' fiT to the values in Figure 21. 
It is to be expected that fiT will increase with spinline 
velocity. Hence an upward trend in To, to a level some 
30°C above the computed 182°C is reasonable. In that 
case, the computed temperatures align reasonably well 
with those reported by Heuvel and Huisman 6v. 

The above comparisons between prediction and 
experiment justify only the possibility of the quantitative 
correctness of the analysis. However, no absolute test 
can be made until truly appropriate values of the 
thermodynamic variables are made. 

CONCLUSIONS 

Both rejected chemical species ('solute') and the heat of 
fusion must be dissipated as a crystal growth front moves 
forward. The natural velocity of the front is defined by 

the thermodynamic driving force. Attainment of the 
natural velocity can be made difficult by sluggishness in 
the dissipative processes. Interface geometries with sharp 
asperities may form to assist the diffusional processes. 
Thus, the flow of 'solute' or heat can act to shape the 
growth front and the final microstructure. A good gauge 
as to whether a dissipative process will act to control the 
microstructure is the diffusion length D/Vd. When the 
diffusion length is significantly greater than the size of the 
growing entity, there should be no effect of the dissipative 
process on the microstructure. But when the diffusion 
length becomes of the same order as or smaller than the 
growing entity, new crystallization patterns must be 
formed. 

A simple application of this principle allows one to 
predict whether spherulites of a given material, growing 
under specific conditions should be microscopically 
smooth or should be composed of growth arms. Further, 
a transition from smooth to armed spherulites is 
predicted for the crystallization of some materials. 

The arms of a spherulite are properly modelled as 
cooperating dendrites, but a simpler model is that of a 
eutectic system. Using the latter analogy, the character- 
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istic d imens ion  A of the growth arm can be predicted 
simply. Again,  the diffusion length is the impor t an t  
parameter .  In  general,  A should increase with increasing 
crystal l ization temperature.  

W h e n  crystal l ization occurs under  condi t ions  of very 
high molecular  strain,  crystal l ization velocities are very 
large and  three conclusions are drawn.  First ,  under  such 
condi t ions,  it is no t  possible for normal ly  non -  
incorporable  mat ter  to diffuse away from the interface;  
it mus t  be incorporated.  Second, a diffusionless 
t ransformat ion  mus t  exist for such rapid t ransformat ion  
to occur. Third,  heat flow must  control  the microstruc-  
ture, which is dendri t ic  in character.  Appl ica t ion of the 
analysis for thermal  dendri te  growth permits  a 
relat ionship a m o n g  temperature ,  growth velocity and  
dendri te  tip radius to be written. This analysis has been 
applied to crystal l izat ion in a high-speed spinline. In  
order to predict absolute  values of the dendri te  tip radius 
and  the crystal l ization temperature ,  a principle of 
m i n i m u m  undercool ing  has been used. Values computed  
from this analysis are in line with measurement .  
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APPENDIX 

Effect of chain stretching on the effective undercooling 
In highly strained materials, the entropy of the initial 

non-crystalline material is decreased and its free energy 
increased, relative to the quiescent melt. Increasing the 
free energy of the non-crystalline phase, via deformation, 
results in an increase in the melting point and, 
consequently, in the effective undercooling. In what 
follows, a simple random-walk treatment of a freely 
jointed chain is used. While this should be only a first 
approximation to reality, it should serve to demonstrate 
the principle and to produce effective undercooling values 
which are also correct to a first approximation. 

For a freely jointed chain, the number of complexions 
of a chain extended in the x-direction to a chain 
end-to-end length Rx is given byV2: 

W (R~) = (E/rm)l/22 " e xp[ -R2 /2 (R2)o  ] (A1) 

where (R z ) o is the mean square x component of the chain 
end-to-end distance of a chain in an unperturbed system. 
Thus Se, the entropy per chain of a chain extended by a 
stretch x = Rx/(R~) o is: 

S e = k lnEW(Rx) ] (A2) 

where k is Boltzmann's constant. The effect of stretching 
an uncrystallized chain is to reduce its entropy. 
Consequently, the entropy of the non-crystallized 
material more closely approaches that of the crystal, the 
free energy difference between the two phases increases, 
and the effective melting point is increased from T m to 
T~,. The molar free energy change upon crystallizing a 
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chain in the perturbed state is then: 

AG = - L ( T ' ~ -  T)/T'= 

+ ( R T / n ) l n [ W ( R x ) / W ( R x ) o ]  (A3) 

where n is the number of flexible segments in a chain. 
Combining equations (29)-(31), we have: 

A G = - L ( T  m - T ) / T ' m =  - R T ( x  2 - 1 ) / n  (A4) 

The effective melting point T~ is determined by setting 
AG = 0. Thus : 

- L ( T  m -  T ) / T " - -  - R T ( x  2 - 1)/n (A5) 

Rearranging (33), the effective undercooling is found to 
be : 

T m -  T =  T{1/ I -1 -  ( R T / 2 L n ) ( x  2 -  1 ) ] - l }  (A6) 

Using thermodynamic values for PET (see Table I ), 
various chain lengths, and a temperature of 453 K (55 K 
below T m), the effective undercooling has been computed. 
The results are shown in Figure AI. What is seen is that 
relatively low chain lengths (n < 400) and relatively large 
chain extensions (x = 3) are required to produce 
substantial undercooling. However, these conditions are 
met in polyester spinlines and orientational undercool- 
ings of tens of degrees should be experienced. Further, 
if the strain is extremely inhomogeneous, as it may be in 
the vicinity of entanglement points and at the growth 
front, the effective undercooling may be even greater. An 
orientational undercooling of 20-30°C is reasonable in 
the spinning of PET. 
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